THE STRUCTURE OF AMINOGLYCOSIDE ANTIBIOTIC 66-40G PRODUCED BY *MICROMONOSPORA INYOENSIS*

MAX KUGELMAN, ROBERT S. JARET and STANLEY MITTELMAN

Research Division, Schering Corporation, Bloomfield, New Jersey 07003, U.S.A.

and WOLFGANG GAU

Bayer AG, Wuppertal, West Germany

(Received for publication May 19, 1978)

Aminoglycoside antibiotic 66-40G is a minor component produced in the fermentation of *Micromonospora inyoensis*. Its structure has been established as 3"-de-*N*-methyl-sisomicin (4) by spectroscopic means and by direct comparison with an authentic sample obtained from photochemical oxidative de-*N*-methylation of sisomicin (1).

Fermentation of *Micromonospora inyoensis* (NRRL 3292) produces sisomicin $(1)^{2}$ as the major aminoglycoside aminocyclitol antibiotic⁸⁻⁶). A number of minor components which are coproduced

in the fermentation of sisomicin (1) have been isolated and their structures established^{5~8}). These include garamine (5)^{5,6}), antibiotic 66-40B (2)^{7,8}), antibiotic 66-40C (6)⁹), and antibiotic 66-40D (3)^{7,8}).

Examination of a concentrate of sisomicin related substances, which had been obtained from the mother liquors of a sisomicin crystallization, revealed a new biologically active component which was designated 66-40G. The 66-40G (4) component which was admixed with 66-40B (2) and 66-40D (3) was readily separated from these two by ion-exchange chromatography on Amberlite CG-50 resin in the NH_4^+ cycle using stepwise elution with dilute NH_4OH . The antibiotic thus obtained, after concentra-

tion and lyophilization of the appropriate fractions, was found to have an elemental composition and a mass spectral fragmentation pattern similar to 66-40B (2) and 66-40D (3). The pmr spectrum of 66-40G (4) did not show a signal in the region of δ 2.4 where the other members of this series show a singlet for the 3"-N-methyl protons. The presence of a 4"-C-methyl group however was indicated by a singlet at δ 1.20. It was apparent, therefore, that 66-40G was 3"-de-N-methylsisomicin (4).

The carbon-13 chemical shifts of 66-40G (4) are shown in Table 1 along with those of sisomicin (1)¹⁰⁾ and are consistent with the structure. Thus, the shielding of C-3" by 8.7 ppm along with the absence of a resonance at 37.9 ppm relative to sisomicin indicates the presence of a primary amine function at C-3".

Methanolysis of 66-40G (4) yielded on chromatography, α and β anomers (7) (in the ratio of about 1:1) of methyl 3-de-*N*-methyl-

Carbon	Sisomicin (1) ¹⁰⁾	Antibiotic 66-40G (4)
1	51.8	51.6
2	36.4	36.3
3	50.4	50.2
4	85.3	85.4
5	75.4	75.4
6	87.8	88.0
1'	100.6	100.8
2′	47.6	47.4
3'	25.6	25.5
4′	96.5	96.6
5'	150.4	150.4
6′	43.5	43.3
1''	101.5	101.4
2''	70.0	71.0
3''	64.3	55.6
4''	73.0	72.3
5''	68.5	68.5
3''-N-Me	37.9	
4''-C-Me	22.9	21.8

Table 1. ¹³C-Chemical shifts (downfield from

TMS) of sisomicin and antibiotic 66-40G

garosaminide in place of the methyl garosaminide which is the product when sisomicin is methanolized⁶⁾.

Furthermore, when examined on tlc, the compound was identical with a sample of 3"-de-*N*-methyl-sisomicin which had been prepared from sisomicin by a photochemical oxidative de-*N*-methylation procedure¹).

Experimental Section

For general conditions see Ref. 9

Isolation of Antibiotic 66-40G (4)

A 5.5 g sample of sisomicin related substances, which was obtained by counter-current distribution of the mother liquors from a sisomicin crystallization, was dissolved in water and after adjustment to pH 6.1, applied to the top of a 3.3 cm × 142 cm Amberlite CG–50 column in the NH₄⁺ cycle. The column was subjected to stepwise elution beginning with water and then changing successively to 0.05 N NH₄OH, 0.1 N NH₄OH and 0.18 N NH₄OH, collecting 20-ml fractions and monitoring by thinlayer chromatography using Analtech silica gel GF plates (250 microns) in the system chloroform methanol - 7% ammonium hydroxide (1: 2: 1). This gave 66-40G (4) in 1.6 g yield on concentration and lyophilization. Changing the eluant to 0.2 N NH₄OH and finally 0.24 N NH₄OH yielded 66-40B (2) (1.8 g) and 66-40D (3) (1.6 g) respectively. These were identical with authentic samples of these compounds previously⁸⁾ obtained (t.l.c., n.m.r., mass spectrometry).

The 66-40G (4) thus obtained had m.p. $168 \sim 178^{\circ}$ C; $[\alpha]_{10}^{20} + 158.4^{\circ}$ (H₂O); δ 5.33 (1H, d, $J_{1',2'} = 2.5$ Hz, H-1'), 5.09 (1H, d, $J_{1'',2''} = 4$ Hz, H-1''), 4.88 (1H, broad t, H-4'), 4.05 (1H, d, $J_{gem} = 12$ Hz, H-5''e), 3.67 (1H, dd, $J_{1'',2''} = 4$ Hz, $J_{2'',3''} = 12$ Hz, H-2''), 3.37 (1H, d, $J_{gem} = 12$ Hz, H-5''a), 3.14 (2H, s, 6'-CH₂), 2.79 (1H, d, $J_{3'',2''} = 12$ Hz, H-3''a), 2.10 (2H, m, H-3'), 2.01 (1H, dt, H-2e), 1.22 (1H, m, H-2a), 1.20 (3H, s, 4''-CH₃); $\theta_{280} - 6260$ (TACu). Found: C, 47.11; H, 7.32; N, 14.07%;

VOL. XXXI NO. 7

Methanolysis of Antibiotic 66-40G (4)

Antibiotic 66-40G (4) (300 mg) was dissolved in 4.5 N methanolic HCl (12 ml) and heated under reflux for 7.5 hours. The solution was cooled, concentrated *in vacuo* and chromatographed on a 2.5 cm × 56 cm silica gel column with the lower phase of the chloroform - methanol - concentrated ammonium hydroxide (1:1:1) system as eluant. This yielded, on concentration of the appropriate fractions, the amorphous aminohexopyranoside mixture of α and β anomers (7) (95 mg). The pmr spectrum (79.5 MHz, D₂O) gave peaks at δ 4.82 (1H, d, J_{1,2}=4 Hz, H–1(β)), 4.3 (1H, d, J_{1,2}=8 Hz, H-1 (α)), 3.75 (1H, d, J=12.5 Hz, H-5e ($\alpha \& \beta$)), 3.54 (3H, s, O-Me (α)), 3.41 (3H, s, O-Me (β)), 3.39 (1H, d, J=12.5 Hz, H-5a ($\alpha \& \beta$)), 3.02 (1H, d, J_{8,2}=11 Hz, H-3 (β)), 2.76 (1H, d, J_{8,2}=10 Hz, H-3 (α)), 1.21 (6H, s, C-CH₃ ($\alpha \& \beta$)) (M+1)⁺ 178.1.

Acknowledgement

We wish to thank Dr. T. L. NAGABHUSHAN for many helpful discussions.

References

- NAGABHUSHAN, T. L.; J. J. WRIGHT, A. B. COOPER, W. N. TURNER & G. H. MILLER: Chemical modification of some gentamicins and sisomicin at the 3"-position. J. Antibiotics 31: 43 ~ 54, 1978
- WEINSTEIN, M. J.; J. A. MARQUEZ, R. T. TESTA, G. H. WAGMAN, E. M. ODEN & J. A. WAITZ: Antibiotic 66-40, a new *Micromonospora*-produced aminoglycoside antibiotic. J. Antibiotics 23: 551~554, 1970
- COOPER, D. J.; R. S. JARET & H. REIMANN: Structure of sisomicin, a novel unsaturated aminoglycoside antibiotic from *Micromonospora inyoensis*. Chem. Comm. 1971: 285~286, 1971
- REIMANN, H.; R. S. JARET & D. J. COOPER: Sisomicin: Stereochemistry and attachment of the unsaturated sugar moiety. Chem. Comm. 1971: 924~925, 1971
- 5) KUGELMAN, M.; A. K. MALLAMS & H. F. VERNAY: The preparation of garamine, a novel pseudodisaccharide from sisomicin. J. Antibiotics 26: 394~395, 1973
- REIMANN, H.; D. J. COOPER, A. K. MALLAMS, R. S. JARET, A. YEHASKEL, M. KUGELMAN, H. F. VERNAY & D. SCHUMACHER: The structure of sisomicin, a novel unsaturated aminocyclitol antibiotic from *Micro*monospora inyoensis. J. Org. Chem. 39: 1451~1457, 1974
- MALLAMS, A. K.; D. H. DAVIES, R. W. TKACH, D. GREEVES & J. B. MORTON: Novel aminoglycoside antibiotics related to sisomicin. 14th ICAAC, Paper 168, San Francisco, Calif., Sept. 11~13, 1974
- DAVIES, D. H.; D. GREEVES, A. K. MALLAMS, J. B. MORTON & R. W. TKACH: Structures of the aminoglycoside antibiotics 66-40B and 66-40D produced by *Micromonospora inyoensis*. J. Chem. Soc. Perkin I 1975: 814~818, 1975
- 9) DAVIES, D. H.; A. K. MALLAMS, J. MCGLOTTEN, J. B. MORTON & R. W. TKACH: Structure of aminoglycoside 66-40C, a novel unsaturated imine produced by *Micromonospora inyoensis*. J. Chem. Soc., Perkin I 1977: 1407~1411, 1977
- MORTON, J. B.; R. C. LONG, P. J. L. DANIELS, R. W. TKACH & J. H. GOLDSTEIN: A carbon-13 magnetic resonance study of aminoglycoside pseudotrisaccharides. The gentamicin antibiotics. J. Am. Chem. Soc. 95: 7464~7469, 1973